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Abstract Cannabinoid receptor-1 (CB1) is widely expressed
in the central nervous system and plays a vital role in regulat-
ing food intake and energy expenditure. CB1 antagonists such
as Rimonabant have been used in clinic to inhibit food intake,
and therefore reduce body weight in obese animals and
humans. To investigate the binding modes of CB1 antagonists
to the receptor, both receptor- and ligand-based methods were
implemented in this study. At first, a pharmacophore model
was generated based on 31 diverse CB1 antagonists collected
from literature. A test set validation and a simulated virtual
screening evaluation were then performed to verify the reli-
ability and discriminating ability of the pharmacophore.
Meanwhile, the homology model of CB1 receptor was con-
structed based on the crystal structure of human β2 adrenergic
receptor (β2-AR). Several classical antagonists were then
docked into the optimized homology model with induced fit
docking method. A hydrogen bond between the antagonists
and Lys192 on the third transmembrane helix of the receptor
was formed in the docking study, which has proven to be
critical for receptor-ligand interaction by biological experi-
ments. The structure obtained from induced fit docking was
then confirmed to be a reliable model for molecular docking
from the result of the simulated virtual screening. The consis-
tency between the pharmacophore and the homology structure
further proved the previous observation. The built receptor

structure and antagonists’ pharmacophore should be useful for
the understanding of inhibitory mechanism and development
of novel CB1 antagonists.
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Introduction

Endo-cannabinoid system consists of some endogenous
ligands (such as anadamide, 2-arachidonoyl, etc.) and two
cannabinoid receptor subtypes (CB1 and CB2). In regard to
distribution and functionality, CB1 receptor is predominant-
ly expressed in the central nervous system and is probably
responsible for most of the pharmacological effects of endo-
cannabinoids, while CB2 receptor is mainly found in pe-
ripheral tissues, such as spleen, tonsil, and immunocytes,
and is involved in the signal transduction processes in the
immune system [1–3]. Both subtypes belong to the class A
family of G-protein-coupled receptor (GPCR), which is
characterized by seven transmembrane α-helices connected
by three extracellular loops (ECLs) and three intracellular
loops (ICLs) [4, 5].

Obesity has become more and more prevalent nowadays
and is gradually recognized as a serious health care problem
which can result in hypertension and diabetes and thus needs
special attention [6]. However, the approved drugs available
to treat obesity are quite limited. Fenfluramine and dexfenflur-
amine, which were once first-line drugs to treat obesity, have
been withdrawn due to potential of valvular heart diseases [7].
Therefore it is well worth the effort to develop novel and
efficient anti-obesity agents with fewer side-effects. CB1 re-
ceptor is of particular interest to us because of its regulation of
appetite. The endo-cannabinoids play an important role,
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through CB1 receptor, in regulating food intake and energy
expenditure. CB1 antagonists such as Rimonabant and Tara-
nabant have proven to play an important role in inhibiting
food intake and thus reduce body weight in obese animals and
humans. Therefore, CB1 antagonists are regarded as promis-
ing anti-obesity agents. Besides, it is reported that CB1 antag-
onists can have good prospects in other therapeutic areas such
as smoking, alcohol addiction and cognitive impairment
[8, 9]. In the past two decades, a large number of synthetic
CB1 antagonists have been reported [10–26]. Rimonabant
from Sanofi is the prototypical CB1 antagonist and has been
served as the template of many subsequent analogues. More-
over, this compound has entered the market in the European
Union for treatment of obesity but was not approved by the
U.S. Food and Drug Administration (FDA) due to concerns of
influencing suicidal ideation [27]. Other analogues that have
progressed into clinical trials include AVE 1625 from Aventis
(Phase II), SLV 319 from Solvay/Bristol-Meyers Squibb
(Phase III), and Taranabant (MK 0364) from Merck (Phase
III), etc. (Fig. 1) [28].

In the past few years many computational methods have
been employed in the investigation of CB1 antagonists. For
example, Shim et al. [29] developed a 3D-QSAR (CoMFA)
model of CB1 antagonists based on 28moleculeswith the same
pyrazole scaffold. Their model was properly constructed and
could explain their experiment results. They also obtained
some useful information for further lead optimization. Howev-
er, it is generally believed that a single CoMFAmodel has quite
limited application domain and is often just used to optimize
lead compounds with the same scaffold [30]. Therefore, in this

study we chose a set of compounds which had broad activity
range and diverse scaffolds in the hope that the reliability of the
generated model could be guaranteed and the application do-
main be broadened. Besides, Wang et al. created a pharmaco-
phore model based on eight CB1 antagonists with Catalyst/
HipHop module [10]. Their model was utilized for virtual
screening and several novel ligands were identified successful-
ly. However, pharmacophore models generated with HipHop
were qualitative and thus could not explain the detailed
structure-activity relationship of the ligands developed. In ad-
dition, their model was based merely on ligand information.
Therefore, it would be useful to develop a quantitative phar-
macophore model based on diverse CB1 antagonists andmean-
while take receptor information into consideration.

Although the crystal structure of human CB1 receptor has
not been determined, homology modeling method can be
used as a complementary method in structure prediction,
especially in the field of GPCR. Many successful studies
have been published in this research area [31–36]. Before
human β2-adrenergic receptor (β2-AR) was determined in
2007 [37], the homology models of CB1 receptor were
based on the crystal structure of bovine rhodopsin [38–42].
Compared with bovine rhodopsin, β2-AR shares higher
identity with CB1. Therefore, we suppose that the results
of homology modeling based on β2-AR would be more
reliable. Recently, Shim et al. [43] built a homology model
of the seven transmembrane α-helices of CB1 receptor
based on β2-AR, which is now regarded as the most reliable
CB1 model. However, extra- and intra-cellular loops also
play an important role in GPCR [31, 32, 34], but no

Fig. 1 Structures of
some typical CB1

antagonists
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attention was paid to these regions in Shim’s study. There-
fore, a receptor model with carefully handled loop regions is
also a significant issue.

As we can see, previous research was accomplished with
either receptor- or ligand-based method. We believe that the
results would be more reliable and useful if receptor- and
ligand-based methods are combined together. Therefore, in
this work, ligand-based pharmacophore modeling, receptor-
based homology modeling and molecular docking were imple-
mented to investigate the critical chemical features and binding
modes of CB1 antagonists. These results can serve as useful
information for the development of novel CB1 antagonists as
well as the understanding of inhibitory mechanism.

Materials and methods

Data set

Ninety-one representative CB1 antagonists, whose activities
were tested by the same biological protocol, were collected
from literature [10–23, 27–29, 44]. Among them, 31 (Table 1)
were selected as the training set for model generation accord-
ing to scaffold diversity and the distribution of activities, and
the remaining 60 compounds (Table S1) were used as the test
set for model validation. The Ki values which spanned four
orders of magnitude were used, instead of using the logarith-
mic values of them.

Table 1 Structures, experimental and predicted binding affinity (Ki) of training set molecules
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The 2D chemical structures of these compounds were
sketched and then minimized with the CHARMm-like force
field in Catalyst 4.10 [45]. The conformers of each compound
were generated in Catalyst in the best quality mode. The
maximal number of conformers was set to 250 with an energy
threshold of 20 kcal/mol.

Generation and validation of pharmacophore models

In the absence of crystallographic data of CB1 receptor, ligand-
based pharmacophore modeling could serve as a complemen-
tary tool for the investigation of CB1 antagonists. Catalyst is a

classical software for pharmacophore generation and has a set
of methods to estimate and validate the results.

In this study, the pharmacophore models were constructed
with the HypoGen module of Catalyst 4.10. When generating
a hypothesis, Catalyst/HypoGen attempts to optimize the
pharmacophore models based on the experimental values
and the complexity of the hypothesis. The uncertainty value,
which represents the uncertainty range of the measured bio-
logical activity for each compound, was set to 3 for compound
activity. It can be deemed as a threshold of the experimental
error. Analysis of the functional groups of each compound in
the training set revealed that three types of chemical features,

Table 1 (continued)

a Ki values were all determined on human CB1 receptor
b The Error column shows the ratio of predicted activity to measured activity (or the ratio of measured activity to predicted activity, if that gives a
number greater than 1, in which case the number is negative)
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namely hydrogen bond acceptor (HBA), hydrophobic group
(HP), aromatic ring group (RA), were common to most train-
ing set molecules and thus were chosen as possible features
for the pharmocophore generating process. The numbers of
HBA, HP and RAwere set to 1∼5, 0∼5 and 0∼5, respectively
and the minimum and maximum numbers of total features
were set to 3 and 5, respectively. All the other parameters were
set as default.

The best pharmacophore model was selected according to
the comparison among the Catalyst parameters having spe-
cific statistical meanings. The selected pharmacophore mod-
el was then validated by test set prediction and simulated
virtual screening test. 60 diverse CB1 antagonists were used
as a test set to verify the ability of the pharmacophore model
to predict the binding affinity values of non-training set
molecules.

The database used for subsequent simulated virtual
screening test was composed of 30 actives and 1000 decoys.
The actives were test set compounds whose IC50 values
were below 100 μM. The decoys were selected based on
the protocols of Discovery Studio 2.1 [46]. Firstly, 258,512
molecules were retrieved from two common commercial
compound database-Specs (http://www.specs.net/) and
Maybridge (http://www.maybridge.com/). Secondly, with
the “find diverse molecules” protocol, 10,000 diverse com-
pounds were chosen from the 258,512 molecules. Finally,
with the “find similar molecules by fingerprint” protocol,
1000 similar compounds were obtained from these 10,000
diverse molecules using the 30 known CB1 antagonists as
references. During this process, similarity calculation was
first performed between the 10,000 diverse molecules and
the 30 actives based on FCFP_4 fingerprint, and then the top
1000 molecules sorted by the Tanimoto similarity index
values were collected as the decoy set. These three consec-
utive steps not only ensured the structural diversity of se-
lected decoys but also kept them localized near the chemical
space of the active molecules. This process has been con-
firmed to be reliable by a previous study of our group [47].
Subsequently, the database was screened with the “ligand
pharmacophore mapping” protocol in the “best flexible
search” and “fast conformation generation” pattern of Discov-
ery Studio 2.1.

Homology modeling

The primary sequence of human CB1 receptor (Accession ID:
P21554) containing 472 amino acids was downloaded from
the Swiss-Prot website (http://www.expasy.ch/sprot/) [48].
The crystal structure of human β2-adrenergic receptor (PDB
ID: 2RH1) was obtained from the Protein Data Bank website
(http://www.rcsb.org/pdb/) [49]. The crystal structure of
2RH1 was prepared with the protein preparation workflow
in Maestro 8.5 [50] before it was used as the template for

homology modeling. During this process, water molecules
were deleted, hydrogen atoms were added and problematic
side chains were fixed. The T4-lysozyme, which was used to
stabilize the structure in the crystallizing process, was deleted
from the 2RH1 structure. The original ligand of 2RH1-Carazol
was kept, so that the homology model would have a ligand in
the same region.

The sequence alignment between P21554 and 2RH1 was
accomplished using Prime 2.0 module [51]. Some residues
were manually aligned to make sure that there were no gaps
in the helix regions and most of conserved residues could be
aligned. The sequence identity of the final sequence alignment
was 29%. Based on this alignment, a homology model was
built. This model was then submitted to loop and side chain
refinement jobs. The resulting model was finally minimized
using MacroModel 9.6 [52] with the OPLS_2000 all-atom
force field.

The quality of the homology model was checked with the
Procheck program [53]. A Ramachandran plot was generated
by Procheck with a resolution of 2.4 angstroms (Å), which
was the resolution of 2RH1. The final homology model was
aligned with the prepared structure of 2RH1 with the proteins
aligning module in Maestro 8.5.

Molecular docking and simulated virtual screening

In this work, several classical CB1 antagonists were
selected for docking study. The induced fit docking
(IFD) workflow of Maestro 8.5 was utilized to dock
the antagonists into the homology model of CB1 recep-
tor. Before docking, the antagonists were prepared with
the LigPrep [54] module of Maestro 8.5. LigPrep was used to
generate low-energy 3D structures of the antagonists which
would serve as the input ligand structures in the subsequent
docking studies.

The IFD workflow utilized Prime 2.0 [51] and Glide 5.0
[55] to induce adjustments in the receptor structure, espe-
cially within the binding pocket. This workflow set up a
sequence of jobs where ligands were first docked into the
receptor with Glide, then Prime refinement was imple-
mented to allow the receptor to relax, and finally the ligands
were redocked into the relaxed receptor with Glide again.
The adjustment and docking processes were all accom-
plished automatically and successively. The grid-enclosing
box was centered on Lys 192 and the box size was set to Auto
and thus was 10 Å on each side. All the other parameters were
left as default.

To evaluate the effect of induced fit docking, a simulated
virtual screening test was carried out. The receptor struc-
tures were the homology models of CB1 receptor before and
after the induced fit docking process. Glide 5.0 was used to
generate the grid files of the homology models with the
original ligands as the grid centers. Then Glide standard
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precision (SP) was employed to dock database compounds
into the grid files. The results of these two models could then
be compared.

Building of consensus model

The pharmacophore model of CB1 antagonists and the homol-
ogy model of CB1 receptor were generated from the informa-
tion of ligands and receptor, respectively. They should be able
to validate the reliability of each other. In this study, we com-
bined these two models together, namely to map the pharma-
cophore model with the homology model. If the chemical
features of the pharmacophore model could map with the
critical residues of the homology model properly, then the
consistency of these two models was achieved. We could call
this kind of combined model a consensus model. This process
was accomplished with Discovery Studio 2.1 and Maestro 8.5.
Firstly, CB1 antagonists were mapped with the pharmacophore
in the flexible and best patterns with the “ligand pharmaco-
phoremapping” protocol. Secondly, based on the results of IFD
docking, the poses of CB1 antagonists having appropriate
binding modes and docking scores were obtained from Mae-
stro. Finally, the pharmacophore aligned with the antagonists
was superimposed onto the aforementioned poses. The charac-
teristics of the combined model were then analyzed visually to
check whether a consensus model could be obtained.

Results and discussion

Pharmacophore generation and validation

Thirty-one compounds (Table 1) which were diverse both in
structure and activity were used as training set to generate
pharmacophore models. Ten models were generated in all
based upon the settings described in theMaterials andmethods
section. Table 2 shows the ten hypotheses as well as some
important parameters such as Δcost, correlation, configura-
tion, etc., which were generated by Catalyst automatically.

As a rule, if the configuration value is less than 18, a
thorough analysis of all models is carried out. If higher, Catalyst
will truncate the list and somemodels would not be considered,
so the results might be incomplete. In our study, the configura-
tion value is 14.1 and thus is acceptable.

Fixed cost is the cost of an ideal model which fits all data
perfectly while null cost is the cost of a null model which has no
features at all and whose estimated activity is the average of the
activity values of training set molecules. These two models
represent the upper and lower limits for the generated models.
During an automated pharmacophore generating process, Cat-
alyst calculates and discards many thousands of models. The
overall assumption is based on Occam’s razor [56] which
believes that among all the equivalent alternatives, the simplest

model is the best one. In this case the model whose cost value is
closest to the fixed cost is the best one. Thus in terms of
hypothesis significance, what really matters is the magnitude
of the difference between the cost of any returned model and
the cost of the null model. In general, if the difference is greater
than 60, there is an excellent chance (>90%) that the model
represents a true correlation. If the difference ranges from 40 to
60, there is a 75-90% chance of representing the true correlation
of the data [45]. In this research, the fixed cost and null cost of
the pharmacophore generating process were 122.8 and 221.1,
respectively. The difference between the fixed cost and null
cost was 98.3, which meant that the training set molecules plus
the Catalyst settings were likely to produce reliable models. As
a matter of fact, theΔcost values of the top ten pharmocophore
models ranged from 80.2 to 86.9 (Table 2). Therefore, all those
models were reasonable in terms ofΔcost values.

Hypo 1 showed optimal values of all kinds of parameters,
such as Δcost, root mean square deviation (RMSD) and
correlation, etc. The total cost of Hypo 1 was 134.2 which
was closest to the fixed cost and at the same time furthest
from the null cost. Therefore, Hypo 1 was the best model
among the top ten according to Occam’s assumption. The
Δcost of Hypo 1 was 86.9 and thus the probability that
Hypo 1 could represent a true correlation of the data was
greater than 90%. The RMSD factor represents the deviation
of the log(estimated activities) from the log(measured activ-
ities) normalized by the log(uncertainties). This parameter
indicates the quality of prediction for training set and the
smaller is the better. The RMSD value of Hypo 1 was 0.827
which was the smallest and therefore the best. The correla-
tion coefficient of training set molecules is another impor-
tant indicator of the quality of the models. Like RMSD
value, correlation coefficient of the training set
can also indicate the predictive ability of a model. The

Table 2 Results of the top ten pharmacophore hypotheses generated
from the training set with the Catalyst/HypoGen module

Hypothesis no. Features Total cost Δcost RMSD

1 AHRR 134.2 86.9 0.827

2 AHRR 137.3 84.1 0.940

3 AHRR 137.3 84.1 0.945

4 AHRR 138.5 82.6 0.986

5 AHRR 138.8 82.3 0.999

6 AHRR 139.5 81.6 1.02

7 AHRR 140.0 81.1 1.03

8 AHRR 140.1 81.0 1.04

9 AHRR 140.4 80.7 1.05

10 AHRR 140.9 80.2 1.05

A: hydrogen bond acceptor; H: hydrophobic group; R: ring aromatic
group

Fixed cost0122.8; Null Cost0221.1; Δcost0Null cost-Total cost
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correlation coefficient of Hypo 1 was 0.951 and was the
largest one. Therefore Hypo 1 could be deemed as the best
pharmacophore model according to the analysis of above
statistical parameters.

Hypo 1 is illustrated in Fig. 2a. The distances between
every two features are also displayed. Figures 2b and 2c
show the mapping of two highly potent (Ki <10 nM) CB1

antagonists with Hypo 1. The first one is Rimonabant with a

Fig. 2 Pharmacophore model
of CB1 antagonist generated
with Catalyst/HypoGen. (a):
Geometrical relationship among
pharmacophore features.
Aromatic ring groups (RA) are
represented by two pairs of
brown meshed spheres,
hydrophobic group (HP) by a
cyan sphere and hydrogen bond
acceptor (HA) by a pair of
green spheres where the smaller
one represents the location of
the hydrogen bond acceptor
atom on the ligand and the
larger one the location of a
hydrogen bond donor atom on
the receptor. The distances
(Å) among the centers of the
features are labeled. (b), (c), (d)
and (e) are the mapping patterns
of Rimonabant, Tarabanant,
Tr19 and Tr24 to the
pharmacophore, respectively.
Carbon atoms are colored in
green, nitrogen atoms in blue,
oxygen atoms in red, chlorine
atoms in light yellow, fluorine
atoms in cyan and
hydrogen atoms in gray.
Non-polar hydrogen atoms
are not shown for clarity
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classic pyrazole core and the second one is Taranabant
which is acyclic. It can be seen that all the features of
Rimonabant and Taranabant can fit the pharmacophore quite
well. The structures of Rimonabant and Taranabant are
significantly distinct from each other (Fig. 1), yet both are
quite active. What’s more, Rimonabant belongs to the train-
ing set while Taranabant does not. This proves that the
pharmacophore we generated has a relatively broad appli-
cation domain. Figures 2d and 2e demonstrate the mapping
of Hypo 1 with two compounds having low potency (Ki
>1000 nM). As we can see, the mapping patterns of them
are much worse than those of Rimonabant and Taranabant.
Comparison of the mapping patterns of the pharmacophore
with these four compounds reveals that the hydrogen bond
acceptor features of D and E cannot be mapped while the
hydrophobic group and aromatic ring features can be mapped
to some extent. Therefore, it indicates that the hydrogen bond
acceptor feature should be critical for a compound to be an
active CB1 antagonist.

The predictive ability of the pharmacophore was first vali-
dated with a test set of 60 CB1 antagonists which had diverse
structures and a wide range of activity values (Table S1). The
test set compounds were prepared with the same method as
that of the training set molecules. The correlation coefficient of
the test set is 0.81 (Fig. 3) and thus suggests a good correlation
between the measured and estimated binding affinities of test
set compounds.

The simulated virtual screening was aimed to evaluate
the discriminating ability of the pharmacophore to tell active
CB1 antagonists from inactive ones. The evaluation of the
performance of simulated virtual screening is an important
but error-prone process. Enrichment factor (EF) evaluates
the improvement of hit rate by a virtual screening method
versus random selection at different screening stages (e.g.,

5% or 10%). However, it has been criticized for its short-
coming of high dependency on the ratio of actives and
decoys in the database [57]. Alternatively, in this study we
used ROC enrichment factor (ROCEF), which was defined
as the ratio of true positive rate to false positive rate at a
given stage where certain specific percentage of the decoys
had been observed. This measurement was similar to EF but
did not show a high dependency on the actives/decoys ratio
[58]. Additionally, we also reported an overall measurement
called area under the curve (AUC) for virtual screening
against the whole data set. As with EF, ROCEF over 1.0
indicates that the enrichment is better than random selection
at certain decoy stages, and an AUC value approaching 1.0
signifies an ideal discrimination of actives from decoys. The
ROC curve of the simulated virtual screening of the phar-
macophore is presented in Fig. 4. In this study, the AUC
value is 0.781 and thus is much better than random selec-
tion. Besides, the ROC enrichment factor at 10% decoy
stage is 7.6. This means that the enrichment is 7.6 folds
higher for virtual screening than random selection at this
stage.

There was a similar study reported by Telvekar et al. [59]
recently. They generated a pharmacophore model based on a
series of 1-sulfonyl-4-acylpiperazine derivatives with phase
of Maestro, Schrödinger [50]. Their pharmacophore model
consisted of one hydrogen bond acceptor, two hydrophobic
groups and two aromatic rings. This model had one more
hydrophobic group than ours. According to our observations
in this study, those two aromatic groups would take part in
some critical π-π aromatic interactions in the ligand-
receptor binding modes. However, the hydrophobic interac-
tion did not show such important function. This additional
hydrophobic feature might make the model too restricted.
Based on the alignment of training set molecules, they

Fig. 3 Graph showing the correlation between measured and predicted
binding affinity (pKi) values of the training set and test set molecules

Fig. 4 ROC curves of the simulated virtual screening tests of pharma-
cophore mapping (a) and molecular docking (b, homology model
before induced fit docking; c, homology model after induced fit
docking)
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conducted 3D-QSAR studies with CoMFA and CoMSIA of
Sybyl, Tripos, in an effort to validate the robustness of the
pharmacophore model. Compared with the results of Telvekar
et al. model, our pharmacophore was improved in two aspects.
Firstly, our training set had broader diversity, which covered a
range of scaffolds whereas theirs was based on 1-sulfonyl-4-
acylpiperazine derivatives. Secondly, as a whole, the predic-
tive ability of our model had been improved. The correlation
coefficients of the training set and test set in our study were
higher than the counterparts of theirs.

Another similar study was reported by Weber et al., who
performed 2D and 3D QSAR investigations based on a series
of diarylpyridines which acted as CB1 ligands by means of
hologram quantitative structure–activity relationship (HQSAR)
and CoMFAmethods [60]. The HQSAR method in their study
was rather innovative and could have significant implications.
Both of their models had good statistical results, as well as
internal and external consistency. With the development of
medicinal chemistry, more CB1 antagonists had been synthe-
sized when our model was generated. Therefore we could use
more novel compounds in the test set, which would make the
results more reliable and convincing. Besides, an additional
simulated virtual screening test was also implemented in our
study and gave good results, which proved that the discrimina-
tive capability of our model was also satisfactory. To further
validate the pharmacophore model generated in this study, we
used the model to predict the activities of the test set com-
pounds of Weber et al. The results were presented in Fig. S4
and Table S2. Overall, the predicting performance of our model
was acceptable. The r2 value of our model was 0.76 which was
comparable to that of HQSAR method (0.80) but better than
that of the CoMFAmodel (0.52). Besides, the two-dimensional
contribution maps and 3D contour maps in their study were
also in good agreement with the critical pharmacophore fea-
tures in our study. For instance, the electrostatic field contour in
their study corresponds to the hydrogen bond acceptor feature
of our model and the nearby green bulk group corresponds to
one of the aromatic ring groups of our model. The r2 values of
test set compounds and the consistence of chemical features
further proved the validity of our model.

Construction and validation of homology model

Figure 5 shows the sequence alignment of human CB1 recep-
tor and human β2-adrenergic receptor (β2-AR). As we can see,
most of the conserved residues reported by Baldwin et al. [61]
are finely aligned. Based on this alignment, a homology model
of CB1 receptor was constructed (Fig. S1). After refinement
and minimization, the homology model was aligned with the
template structure 2RH1. The RMSD value between them was
1.20 which indicated that the model generated was acceptable
and nomanifest deviation was observed. The optimized model
was then examined by the Procheck program which gave a

Ramachandran plot (Fig. S2). The result was rather satisfacto-
ry: 92.9% of the residues lay in the most favored regions, 6.0%
in the additional allowed regions, 1.2% in the generously
allowed regions and none in the disallowed regions.

During a classical molecular docking process, the receptor
is held rigid while the ligand is free to change conformation.
However, the assumption of a rigid receptor can often give
misleading results, because in reality most proteins would
undergo significant side-chain or backbone movements upon
ligand binding. These changes allow the receptor to alter its
binding site so that it can conformmore closely to the shape of
the ligand. This process is often referred to as “induced fit” and
is one of the main tricky problems in structure-based drug
design.

Some classical and highly potent CB1 antagonists were
docked into the ligand binding site of the homology model
by the induced fit docking (IFD) workflow of Maestro 8.5.
The docking result of Rimonabant shows that a hydrogen
bond is formed between the carbonyl group and Lys192
(TMH3) (Fig. 6a). This kind of hydrogen bond interaction
was also observed for other antagonists (Fig. S3). According
to previous experimental studies, especially the mutation re-
search, Lys192 in the third transmembrane helix was believed
to play a critical role in the ligand-receptor binding interaction
[24–26]. Besides the hydrogen bond interaction, Rimonabant
also forms hydrophobic interaction with several residues, such
as Phe174, Phe178, Phe200, Phe278, Trp279, Trp356, and
Phe379. This observation is also consistent with previous
experimental studies [62]. The hydrophobic interaction, most
of which is aromatic π-π stacking interaction, though not as
specific as hydrogen bond interaction, is also important for
ligand binding.

To further evaluate the validity of the homology model of
CB1 receptor, a simulated virtual screening test with Glide
standard precision (SP) [55] was implemented. The homology
models (model 1 and model 2) before and after induced fit
docking were used as the receptor structure, respectively. The
results of both models are presented in Fig. 4. As we can see,
the result of model 2 is much better that of model 1. The AUC
value of model 1 is 0.40 which is even lower than that of
random selection (0.50). This is due to the fact that the binding
pocket of model 1 was not optimized and thus might have
some steric collision with the ligands and this would in turn
give misleading results. By comparison, the result of model 2
is much better and its AUC value (0.80) is comparable with
that of the pharmacophore (0.78). This indicates that induced
fit docking of the homology model with active ligands is able
to optimize the binding pocket and make it similar to its
realistic state. The high AUC value of model 2 suggests that
the homology model after induced fit docking is suitable to be
used as the receptor structure in molecular docking.

Before the crystal structure of β2-AR was determined in
2008, reported homology models of CB1 receptor were
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constructed on the basis of the crystal structure of bovine
rhodopsin [38–40]. The sequence identities β2-AR and bo-
vine rhodopsin with human CB1 receptor are 29% and 25%,
respectively. It is believed that a high sequence identity is
essential for a reliable homology model. Therefore our
model is supposed to be more reasonable than previous ones
on this aspect. For example, in the homology model con-
structed by Shim et al. [38], several CB1 ligands such as
CP47497 and CP55940 were docked into the model and
found that a key hydrogen bond was formed between Lys192
and the ligands, which was consistent with our results. In
another model developed by Salo et al. [39], similar role of
residue Lys192 was proposed for the potency of CB1 ligands.

They also suggested that several aromatic residues such as
Phe200, Tyr275 and Trp356 would take part in π-π stacking
interactions with the ligands, which was in good agreement
with our findings as illustrated in Fig. 6.

The models based on β2-AR are relatively scarce. Shim
et al. reported a CB1 receptor model based on β2-AR [43].
Their model shed light on some critical interactions among
transmembrane helices. However, it did not take the intracel-
lular and extracellular loops into consideration, which were
believed to play an important role in the ligand-receptor
binding interaction as well. What’s more, they also helped to
form the binding pocket CB1 receptor. Therefore, the model
built in this study is supposed to be more reasonable for the

Fig. 5 Sequence alignment
of CB1 receptor with
β2-adrenergic receptor.
Marked are conserved
residues and particularly
those in red are
identical ones

Fig. 6 (a) Detailed interaction of Rimonabant with the homology model
of CB1 receptor. (b) Consensus model generated by mapping of the
pharmacophore model to the binding site of the CB1 homology model.
Rimonabant and amino acids are displayed in stick mode. The carbons of

the ligand are shown in green while those of the amino acids in gray. The
hydrogen bond is presented as red dash lines. Only polar hydrogens are
displayed for clarity
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studying of ligand-receptor binding interaction as well as
receptor-based drug design.

Consensus model

The consensus model was created with CB1 antagonists as the
common ligands in both the pharmacophore model (hypo 1)
and the receptor homology model (model 2) as demonstrated
in the Materials and methods section. Figure 6b shows the
consensus model with Rimonabant as the common ligand. It
can be seen that the hydrogen bond acceptor feature overlaps
with the terminal amine of Lys192, which indicates that the
ligand would form a hydrogen bond with the receptor in this
region. Besides, the aromatic ring feature RA1 is almost
parallel with the phenyl rings of Phe200 and Phe379 and the
indole ring of Trp356. Another aromatic ring feature RA2 is
approximately parallel with the phenyl ring of Phe278, though
not so perfect as RA1. The mapping of the aromatic ring
features with relevant aromatic residues indicates that Rimo-
nabant can have manifest π-π stacking interactions with
Phe200, Phe278, Trp256 and Trp379. Last but not least, the
hydrophobic feature is located in the hydrophobic domain
around Leu356, Trp359, etc. and thus can have hydrophobic
interaction with these residues. All this information shows that
our pharmacophore model generated based on the ligands
alone is in good agreement with the docking results consider-
ing both the receptor and the ligand. This consistency is able to
testify the rationality of both models. It can also identify some
important features of the receptor-ligand interaction mode. In
this study, the hydrogen bond acceptor and aromatic ring
features were found to be critical for both models. Therefore,
in further studies such as virtual screening and lead optimiza-
tion, we should pay special attention to these features.

It should be noted that the mapping of the predocked ligand
to the pharmacophore is not as perfect as that shown in
Fig. 2b, where the information of the receptor is not consid-
ered. One possible explanation is that the ligand conformation
mapping best with the pharmacophore is not the same as that
interacting most favorably with the receptor. But the differ-
ence is acceptable and thus the results can still provide useful
information for the development and optimization of CB1

antagonists.
Generally speaking, pharmacophore mapping is much

faster than molecular docking-in this case it is ten times faster,
but the efficiencymay not be so good [63]. For large databases
such as Enamine which have millions of compounds, molec-
ular docking would be very time-consuming. The consensus
of the pharmacophore model and homology model developed
in this study proved the reliability of each other mutually.
Therefore they can be used together in further studies. The
most important utility of them is to be implemented together in
the so-called combined strategy of virtual screening, where
pharmacophore mapping is first used to filter the compounds

which do not have essential features and then molecular
docking is employed to choose those having excellent dock-
ing scores and specific binding modes. In this way, the speed
can be increased several times yet the result would still be
similar or even better. The combined strategy of pharmaco-
phore mapping and molecular docking can thus increase
speed and efficiency simultaneously.

Conclusions

In this study, CB1 pharmacophore models were generated
based on 31 diverse antagonists. The best model consisted
of four features, namely one hydrogen bond acceptor, one
hydrophobic center and two aromatic rings. This model had
a highΔcost value of 86.9, which indicated that the reliability
of this model would be more than 90%. The correlation
coefficients between experimental and predicted Ki values
were 0.95 and 0.81 for the training set and test set, respective-
ly. Meanwhile, a homology model of human CB1 receptor
was built based on the crystal structure of human β2-adrener-
gic receptor. Residue Lys192 in the third transmembrane helix
of CB1 receptor was found to form a critical hydrogen bond
with antagonists. In addition, residues Phe174, Phe178,
Phe200, Phe278, Trp279, Trp356, and Phe379 could form
π-π stacking and hydrophobic interactions with those antag-
onists. These observations were consistent with previously
experimental results. The homology model after induced fit
docking proved to be suitable to be used as receptor structure
in molecular docking, the result of which was even better than
that of pharmacophore mapping. Finally, a consensus model
was generated by combining the pharmacophore model and
homology model together. The pharmacophore features of
CB1 antagonists and the key residues of the receptor could
map pretty well. The consistency of them could validate each
other mutually. These findings might be helpful for the under-
standing of inhibitory mechanism as well as the development
and optimization of CB1 antagonists.
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